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Abstract 

Background:  The transmission dynamics of influenza virus within healthcare settings are not fully understood. Cap‑
turing the interplay between host, viral and environmental factors is difficult using conventional research methods. 
Instead, system dynamic modelling may be used to illustrate the complex scenarios including non-linear relationships 
and multiple interactions which occur within hospitals during a seasonal influenza epidemic. We developed such a 
model intended as a support for health-care providers in identifying potentially effective control strategies to prevent 
influenza transmission.

Methods:  By using computer simulation software, we constructed a system dynamic model to illustrate transmis‑
sion dynamics within a large acute-care hospital. We used local real-world clinical and epidemiological data collected 
during the season 2016/17, as well as data from the national surveillance programs and relevant publications to form 
the basic structure of the model. Multiple stepwise simulations were performed to identify the relative effectiveness 
of various control strategies and to produce estimates of the accumulated number of healthcare-associated influenza 
cases per season.

Results:  Scenarios regarding the number of patients exposed for influenza virus by shared room and the extent of 
antiviral prophylaxis and treatment were investigated in relation to estimations of influenza vaccine coverage, vac‑
cine effectiveness and inflow of patients with influenza. In total, 680 simulations were performed, of which each one 
resulted in an estimated number per season. The most effective preventive measure identified by our model was 
administration of antiviral prophylaxis to exposed patients followed by reducing the number of patients receiving 
care in shared rooms.

Conclusions:  This study presents an system dynamic model that can be used to capture the complex dynamics 
of in-hospital transmission of viral infections and identify potentially effective interventions to prevent healthcare-
associated influenza infections. Our simulations identified antiviral prophylaxis as the most effective way to control 
in-hospital influenza transmission.

Keywords:  Healthcare-associated infections, Influenza, Infection prevention and control, System dynamics, Decision 
support systems, Modelling
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Background
The annual global influenza epidemic has a great impact 
on the society in terms of increased morbidity, mortal-
ity and cost. For healthcare facilities, influenza infec-
tions pose special hazards as acute-care hospitals are 
semi-closed, crowded settings with a continuous internal 
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flow of people. Transmission of infectious diseases is a 
complex interplay determined by the infectivity of the 
pathogen, the contagiousness of the infected individual, 
the susceptibility of the exposed individual, the contact 
patterns between the infected individual and the exposed 
individual and the environmental stress exerted on the 
pathogen during transmission [1]. These factors may 
act in conjunction to develop “super-spreading events”; 
where a few individuals disproportionally infect several 
secondary cases [2]. Reduced transmission therefore 
by extension also reduces influenza-related morbidity 
and mortality rates. Healthcare-associated infections 
(HCAI), sometimes referred to as nosocomial or hospi-
tal-acquired infections, are a threat to both patients and 
caregivers, and account for an annual estimated num-
ber of 330,000 deaths and 900,000 disability-adjusted 
life years in Europe only [3]. Hospital in-patients often 
have underlying illnesses which make influenza infec-
tions more severe and potentially fatal in this setting [4, 
5], and in addition to patients may staff and visitors act 
as potential reservoirs. The current COVID-19 pandemic 
has put focus on environmental factors such as the extent 
of airborne transmission, which has been a long-standing 
controversy regarding influenza virus [6, 7]. Healthcare-
associated infections caused by influenza viruses is likely 
to be underrecognized [8, 9] and there are considerable 
differences regarding case definitions, surveillance meth-
ods and infection control practices [9] which may com-
plicate development of evidence-based policies.

To control in-hospital transmission and prevent out-
breaks, the possibility of forecasting plausible scenarios 
is crucial for healthcare planning. Modelling studies 
may be used to illustrate patterns, facilitate understand-
ing and assist decision-making [10]. Furthermore, mod-
elling studies have the advantage of being cost-effective 
and ethically feasible as they do not put patients or staff 
at risk. Statistical and mathematical models however 
have limitations regarding the non-linear connections 
and multiple interactions that characterizes complex 
real-world situations like infectious disease transmission. 
Instead, system dynamic modelling may be used, which 
by generating quantitative results using interacting scales 
and feedback loops within defined boundaries [11, 12]. 
Computational tools are essential to synthesize data for 
modelling. Several software applications are now avail-
able, which may include free on-line publication of model 
interfaces. System dynamic modelling has been used 
in different settings for refining guidelines and design-
ing prevention strategies [13–16]. It has been described 
as well suited for medical research due to the complex 
and feedback-rich interactions and enables compression 
of decade-long disease trajectories into very short time, 
testing sensitivities and combinations of interventions 

[17, 18]. Simulation models for transmission of HCAI 
have previously focused on bacterial infections, depict-
ing single-ward settings such as intensive-care units [17, 
19–22]. Regarding healthcare-associated influenza, only 
a few modelling studies have been found [23–26], to our 
knowledge none with focus on transmission between 
patients.

The aim of this study was to develop an applicable sys-
tem dynamic model to illustrate the in-hospital trans-
mission pattern of influenza across an entire season. 
Moreover, we aimed to use the model to simulate various 
scenarios in order to predict the relative impact of modi-
fiable factors and to identify effective measures for pre-
venting transmission of healthcare-associated influenza.

Methods
The basic structure of the model described in this paper 
was constructed in collaboration between the authors, 
which include clinical expertise in infectious diseases, 
virology, infection control and experienced system 
dynamic modellers. It was designed exclusively for this 
study and integrates virologic properties and national 
surveillance data. The Stella Architect simulation soft-
ware (Stella Architect, version 1.7.1, isee systems Inc., 
Lebanon, NH, USA) was utilized to produce estimates of 
the total number of healthcare-associated influenza cases 
during a typical season for a variety of possible scenarios.

The process consisted of the following consecutive 
steps:

1. Methodological considerations. 2. Identifying key 
variables with a potential influence on in-hospital trans-
mission of influenza 3. Construction and technical vali-
dation of the model. 4. Selecting the model scenarios of 
interest. 5. Producing the simulations.

Methodological considerations
Initially three simulation methodologies were considered. 
Firstly, discrete event simulation, which may be used to 
model sequences of activities and specific events over 
time [17] Discrete event simulation represents systems at 
an operational level [27] with stochastic changes in dis-
crete intervals [28] which was not the case in the project 
at hand. Secondly, agent-based modelling, where agents 
(patients) are described by their properties and interac-
tions with other agents [17] . Agent based models may 
be useful when simulating epidemiology [29] although 
resource-intensive in both the modelling and interpre-
tation phases [30]. Finally, a system dynamic model was 
selected as it may illustrate continuous flows rather than 
individual events [27], aggregated data and non-linear 
relationships [17] which are characteristic for transmis-
sion of infectious diseases. Furthermore, the authors 
had both solid experience of system dynamic modelling 
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of disease trajectories [15] as well as access to data for 
healthcare-associated influenza for season 2016/17 [31].

Key variables used for model design
The Sahlgrenska University Hospital, Gothenburg, Swe-
den constitutes the base of the model regarding patient 
flow and clinical management. It is a full-scale, acute-
care facility with ~ 1900 beds, three separate emergency 
departments (ED) and has daily access to diagnos-
tic virology laboratory service. The internal medicine 
ward housing the highest number of influenza-infected 
patients during previous seasons served as a model 
for a standard ward regarding data for mean bed occu-
pancy rate, facility design (number of patients in single 
occupancy rooms vs rooms with multiple beds) and a 
mean length-of-hospital stay of 3 days. All patients at the 
standard ward are admitted via the ED. During the peak 
influenza season (December–March), the standard ward 
had an average occupancy rate of 110%, a total of 1031 
hospitalizations and 55 cases of confirmed influenza. Due 
to the high occupancy rate, cohorting of patients with 
influenza in multiple rooms is common instead of single 
room care.

Data regarding patient flow from season 2016/17 was 
collected from the hospital administrative system. The 
average number of patients seeking care at the main ED 
were estimated to be 4600 per month, whereof 26% were 
admitted for inpatient care. Number of patients with 
symptoms possibly explained by influenza (fever, short-
ness of breath or “unspecified infection” as registered 
reason for encounter) were estimated to be 600 cases per 
month. We assumed that the average time point for ED 
consultation occurred at day 2 of the disease course for 
an influenza patient, which is in line with other reports 
[32–34]. Exposure was defined as contact by sharing 
room with a confirmed influenza as suggested by the 
hospital guidelines for influenza prevention and control. 
The average number of roommates for each patient at the 
standard ward was 2.2, and we used this figure as a proxy 
of the number of exposed patients per influenza case.

The definition of an influenza case was any patient 
> 18 years old with a respiratory sample positive for influ-
enza by real-time PCR. A case of HCAI was (in addition 
to a laboratory confirmed infection) was defined as hav-
ing onset of influenza-like or acute respiratory symptoms 
> 48 h after hospital admission or < 48 h after a previous 
discharge, according to current definitions proposed 
by US Centers for Disease Control and Prevention [35]. 
We assumed that individual infectivity was related to the 
graph showing the change in viral load in nasopharynx 
samples during the disease course, why we used this as 
proxy measure [36, 37].

The mean effect of antiviral treatment of sympto-
matic infection was estimated to shorten the duration 
of symptoms (which in the model was assumed to fol-
low the curve for viral load interpreted as infectivity) by 
24 h when treated within 48 h after symptom onset [38]. 
A share of uninfected individuals may further develop 
influenza despite antiviral prophylaxis. Recommended 
prophylactic treatment after exposure (oseltamivir) is 
estimated to reduce the risk of infection for exposed 
individuals by 70–90% [39], why we chose a mean of 80% 
effect as model variable. Epidemic curves showing weekly 
estimates of the number of confirmed influenza cases in 
the society over time from season 2013–2019 were col-
lected from the Public Health Agency of Sweden [40].

Finally, we integrated previously published real-world 
outcome data for management of influenza cases at the 
hospital season during the 2016/17 season [31]. This par-
ticular season, a total of 432 hospitalized cases of influ-
enza were identified at the hospital, whereof 114 (26%) 
were classified as HCAI. Of the non-HCAI influenza 
cases, 53% were treated with antiviral therapy compared 
with 62% of the HCAI-cases. Based on the recommenda-
tion to offer treatment to all patients in need of hospital 
care for influenza, we therefore estimated the diagnostic 
accuracy at the ED to be 56% based on clinical presenta-
tion and management.

The risk to be infected with influenza during hospi-
tal stay for patients who were not infected at admission 
further depend on vaccination coverage and vaccine 
effectivity, which vary between seasons. We therefore 
included the mean vaccine effectiveness for the sea-
son 2016/17, which was estimated to be 40% [41], and 
national data regarding vaccine coverage among people 
> 65 years old which were estimated to be 49% [40].

Several unknown factors are likely to influence the 
number of HCAI cases during an influenza season. Aero-
sol transmission may occur over longer distances and 
has been suggested to account for approximately half of 
the transmission events [42], but is highly depending on 
local environmental conditions. In addition, the potential 
for health-care workers to act as reservoirs or vectors for 
transmission of influenza is high [43] but insufficiently 
studied.

Construction and technical validation
The construction of the model started with illustrat-
ing the patients’ way from the ED through the hospital 
until discharge by a simple flow chart (Fig. 1), which the 
modellers then translated into a “stock-and-flow” dia-
gram (Fig.  2.) The purpose was to highlight when and 
how influenza may spread to other patients within the 
hospital and builds upon a graphical representation 
which illustrates the patient-flows involved. Details of 
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exact time-point for transmission, or when suspicion 
for influenza arises, differs among patients and is often 
unknown. Figure 1 was used primarily to establish a com-
mon ground and ensure that the modellers understood 
the patient flows and the interventions which should be 
reflected in the finalized system dynamic model.

The “stock-and-flow”- diagram is more extensive and 
less easy to comprehend without specific knowledge, 
but enables quantifications of scenarios by mathemati-
cal expressions and interactions where both actual data 
and assumptions can be combined. The different patient 
populations constitute the major flows in the system. 
Stocks represent groups of patients at a similar stage (in 
this model divided into cohorts day-by-day along the dis-
ease course), what in system dynamics is described as an 
“aging chain”. The model has in total 32 flows connecting 
33 stocks mainly along aging chains. The stocks and 54 
variables are used in 40 equations influencing the hitherto 
non-infected patients. A key factor in the model was the 
actual “attack rate”, which was handled through by adding 
a calibration factor to match the true number of health-
care-associated infections found during season 2016/17. 
Thus, in this respect, the “calibration factor” reflect sev-
eral random accumulated unknown variables with a 
potential impact on in-hospital influenza transmission.

The validity of a model constructed for evaluating 
effectiveness of strategies refers primarily the internal 
structure, which should represent the relevant aspects 
as well as reproducing and explaining the behaviour of 

the system [44]. The structural validity of the model was 
ensured by ascertaining its congruence with the patient 
flows in Fig.  1. The behavioural validity was established 
by thorough testing by the medical researchers ensur-
ing that the model behaved as expected as well as testing 
extreme values in input variables. During validation the 
model went through four major iterations and numerous 
minor iterations. In our model, the non-infected patient 
population is infected by individuals included in an influ-
enza-infected population. Individual infectivity (reflected 
by the curve for viral load day-by-day) were included in 
the model by the aging chains. The resulting number of 
HCAI cases further depend on exposure.

Apart from studying the effects of the variables men-
tioned above, we included a possibility to set various sea-
sonal epidemic curves in the model as well as increasing 
the total number of influenza-infected patients seeking 
care at the ED. Rather than adding additional random-
ness we decided to include the total number of influ-
enza cases from previous seasons as this would allow us 
to future studying of seasons as single scenarios. By this 
mean the model may compare if interventions provide 
similar outcomes despite seasonal differences. Further-
more, the user interface allows testing the effects of an 
alteration of any variable, either isolated or in combina-
tion with alterations of other variables. Equations, an 
expanded version of Fig. 2 including model interface and 
an xmile version of the model are included in the Addi-
tional files 1 and 2.

Fig. 1  Flow-chart of the patient populations. Patients not infected with influenza on admission to the hospital are shown in green. Patients with 
influenza (blue) may be either detected or undetected. Influenza may be transmitted from the infected patients to non-infected, mainly by close 
contact by sharing rooms (purple). Patients with a known exposure to influenza (grey) are recommended prophylactic antiviral treatment. Some 
of the exposed patients yet develop influenza and thereby transfer to the blue flow, others remain in the green flow. A small number of influenza 
patients may recover during hospitalization (transferring from the blue flow to the green), others remain in the blue flow and are discharged while 
still infectious
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Selection of the model scenarios of interest
Step 1: Impact of modifiable patient‑related factors
Our purpose was to construct a model able to iden-
tify the most effective control measures for a hospital 
to reduce the total number of HCAI cases per season. 
We therefore initially focused on modifiable patient-
related factors and stepwise altered following four 

scenarios in the model: (i) Mean number of patients 
exposed by sharing room with an influenza case (ii) 
Share of non-HCAI cases receiving antiviral treat-
ment within 48 h of symptom onset (iii) Share of HCAI 
influenza cases receiving antiviral treatment within 
48 h of symptom onset (iv) Share of exposed patients 
receiving antiviral prophylaxis.

Fig. 2  “Stock-and flow” model. Stocks (accumulations of patients) are illustrated as rectangles, and flows (inputs and outputs) as pipes to/from the 
stock as the stages change. The model structure follows Fig. 1. The inflow of influenza patients is divided into two sub-flows, (1) patients where 
influenza is suspected already at the ED and may thereby be subject to immediate interventions such as antiviral treatment and/or single room care 
and (2) patients who are not suspected of having influenza. Each flow has an “aging chain” over 7 days, (where infectivity is reflected by a curve for 
viral load day-by-day). Patients admitted for other reasons may be exposed by sharing rooms with infected patients. Individual infectivity is included 
as a function of the average viral loads of infected patients, vaccination effectivity, coverage and effectiveness of antiviral prophylactic treatment. 
Patients who become infected at the hospital also flow into an “aging chain” where they subsequently may infect other fellow patients
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Step 2: Impact of non‑modifiable epidemiological factors
In the second simulation round, the variables identified 
as having the most impact in simulation one, i.e., mean 
number of exposed patients per influenza case and share 
of exposed subjects receiving antiviral were retained. We 
instead added and stepwise altered extreme values of 
scenarios beyond hospital control (non-modifiable) for 
mean vaccine coverage, mean vaccine effectiveness and 
total number of influenza cases seeking care at the ED.

Producing the simulations
One variable at a time were given a set value (for exam-
ple: mean number of exposed patients = 1), followed by 
a stepwise altering of the other scenarios selected above, 
one variable at a time. Each simulation was performed 
by manually changing the variable on the screen which 
instantly delivered instant numerical and graphical 
results as total number of HCAI cases per season. This 
leaves 13–15 estimates per set variable. In the first round, 
a total of 240 simulations were performed followed by 
440 in the second round.

Results of simulations
Basic model variables are shown in Table  1A-C  and 
results of the simulations are summarized in Table  2. 
The outcome variable is presented as the estimated 
total number of HCAI cases per season. Antiviral 
prophylaxis given to patients who were exposed by 
sharing room with an influenza case was identified as 
the single most effective measure, followed by a reduc-
tion of the mean number of exposed patients. Table  2 
summarizes the estimated number of HCAI cases for 
the simulated scenarios by stepwise alteration of these 
two variables. If antiviral prophylaxis was administered 
to all exposed patients, approximately 17 cases of HCAI 
would occur. This is explained by a mean number of one 
(not zero) exposed patients/influenza case combined 
with known incomplete protective effect of prophylaxis 
[45]. The maximum number of estimated HCAI-cases 
in simulation round 1 was found to be 432 in a scenario 
where no exposed patients received prophylaxis and 
three patients were exposed per influenza case. Anti-
viral treatment of already asymptomatic non-HCAI, as 
well as of HCAI-cases, had limited effect on in-hospital 
transmission in the model (data not shown).

The differences in total number of healthcare-asso-
ciated influenza cases per simulated season when the 
extent of antiviral prophylaxis was set to 0–25–50-75-
100% for the selected variables in simulation round 1 
were 415 (range 17–432) and 522 (range 17–539) in sim-
ulation round 2. The substantial impact of the extent of 
antiviral prophylaxis initiated after exposure found in our 

model was also well demonstrated by an estimated num-
ber of HCAI of less than 100 despite a worst-case model 
scenario; including variables set to 0% vaccine coverage, 
0% vaccine effectiveness, a mean number of 3 exposed 
cases/ influenza case and a total inflow of 2000 patients 
with influenza symptoms to the hospital ED.

We further estimated the risk for patients admitted for 
other reasons of contracting influenza during hospital-
stay and applied this for different model scenarios. Based 
on the hospital data from 2016 to 17, the following calcu-
lations were made. The influenza season was assumed to 
last for 12 weeks. The total number of patients admitted 
during this season was estimated to be 3588 (on average 
4600/month ED appointments with an admittance rate 
of 26%). The number of non-HCAI influenza cases were 
found to be 321, which leaves a total of 3588–321 = 3267 
patients at risk of acquiring influenza during hospital stay. 
The number of HCAI influenza cases where 114, which 
leaves an estimated risk of 3.5% for any patient during 
the influenza season, not infected upon admittance, to 
develop influenza during hospitalization. By increasing 
the share of prophylaxis from 0 to 100%, the risk for con-
tracting influenza decreased as followed (all other vari-
ables left unchanged): Mean number of exposed cases: 

Table 1  A. Basic model variables based upon seasonal data 
from 2016/17. B. Altered variables in simulation round  1. C. 
Altered variables in simulation round 2

A. Basic model variables
  Influenza cases (n) 432

  Mean number exposed in shared rooms (n) 2.2

  Vaccine coverage (%) 49

  Vaccine effectiveness (%) 40

  Share of exposed treated with prophylaxis 
< 48 h (%)

56

  Prophylactic effectivity (%) 80

  Diagnostic accuracy at ED (%) 56

  Share of non-HCAI influenza treated on admis‑
sion (%)

53

  Share of HCAI influenza treated < 48 h (%) 62

B. Simulation round 1
   (1) Mean number exposed in shared rooms (n) 1–2- 3

   (2) Share of non-HCAI treated on admission 
(%)

0–25–50-75-100

   (3) Share of HCAI treated < 48 h (%) 0–25–50-75-100

   (4) Share of exposed receiving prophylaxis (%) 0–25–50-75-100

C. Simulation round 2
   (1) Mean number exposed in shared rooms (n) 1–2- 3

   (2) Share of exposed receiving prophylaxis (%) 0–25–50-75-100

   (3) Mean vaccine coverage (%) 0–25–50-75-100

   (4) Mean vaccine effectiveness (%) 0–25–50-75-100

   (5) Total influenza inflow to ED (n) 500–1000–1500-2000
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One: 2.8–0.5% Two: 7.2–1.1% and Three: 13.2–1.7%. We 
selected two future scenarios for risk calculations: Mean 
number (1, 2 and 3) of exposed patients in shared rooms 
in relation to share of exposed patients receiving antivi-
ral prophylaxis (0–100%). In Table 3, the model estimates 
for absolute and relative risk reductions are displayed in 
addition to relative risk and number of patients needed to 
treat to prevent one HCAI influenza case.

Discussion
In this study, we have constructed a system dynamic 
model for healthcare-associated influenza. We show how 
the model may be used to increase the understanding of 
in-hospital influenza transmission, make predictions of 
future scenarios, and estimate the effect of preventive 
interventions in a typical hospital.

We chose to construct a system dynamic model, due 
the ability to capture the non-linear relationships and 
feed-back loops [11] which applies well for transmission 
of infectious diseases. It was the first type of simulation 
model published to illustrate healthcare associated infec-
tions and one of the most widely used [46]. Alternative 
modelling strategies were discussed but considered less 
suitable for the case at hand. A future approach may 
instead be models which combine discrete events for 
patient’s logistics with system dynamics for epidemiology 
suggested by Viana et al. [47].

Previous evaluations of healthcare-associated influ-
enza are often focused on single components in the chain 
of transmission and have found moderate to low effect 
of control measures such as hand hygiene, facemasks, 

and vaccination of health-care workers [48–50]. Obser-
vational studies of influenza transmission and hospi-
tal outbreaks often have shortcomings in methodology 
and multiple confounders. Communicable diseases dif-
fer from non-communicable diseases in the aspect of 
interventions which reduces the number of cases in 
one population (such as direct effects of vaccination 
or prophylaxis) will further reduce the risk of other in-
patients becoming infected (indirect effects). Dynamic 
models may reproduce this complexity of on transmis-
sion and was therefore preferred over a static model 
which assume a constant force of infection.

The finding of antiviral prophylaxis as an effective 
measure to reduce the number of HCAI cases in our 
model is in line with previous reports [39, 51, 52] and 
has been shown to shorten the duration of influenza 
outbreaks at long-time care facilities [53, 54]. In addi-
tion, hospitalization in double-occupancy rooms vs 
single-occupancy rooms showed higher risk of hospital-
acquired influenza in a prospective cohort study [55]. 
Alterations in prophylaxis regimens may however be 
more easily enforced than single room care or cohorting 
of infected patients, especially during the seasonal peak 
of influenza. Likewise, high-quality evidence supporting 
that antiviral treatment to already symptomatic influenza 
patients interrupt further transmission is lacking [56].

Exposure was included as a variable in the model 
only for patients sharing room with an influenza case, 
although there may be several other opportunities for 
influenza exposure within the hospital environment. 
However, this is a common definition used by hospi-
tal infection control in non-outbreak situations. We 
assumed a direct association between infectivity and 
nasopharyngeal viral load which has been proposed in 
other studies [36, 57], although evidence for this is lim-
ited and might over-estimate the extent of transmission 
occurring around the time of symptom onset [37].

The precision in recognizing influenza cases, both at 
the ED as well as later during hospital stay, is a key fac-
tor to target patients who are likely to spread the virus 
and enable any control measure. Early identification may 
be even more important than prophylaxis when it comes 
to prioritizing single room care (or cohorting of influenza 

Table 2  Estimated number of HCAI influenza cases found 
by modelling scenarios by altering mean number of exposed 
patients in shared rooms in relation to share of exposed patients 
receiving antiviral prophylaxis

100% 75% 50% 25% 0%

Mean exposed patients/room (n)
1 17 34 53 74 92

2 35 75 121 134 235

3 54 121 203 304 432

Table 3  Risk reduction and NNT for contracting influenza during hospital-stay. Numbers shown for HCAI influenza cases in relation to 
mean number of exposed cases (1, 2 and 3) and effect of increased share of exposed cases receiving prophylaxis (0–100%)

ARR​ Absolute risk reduction, RRR​ Relative risk reduction, RR Relative risk and NNT Number needed to treat

Mean exposed (n) HCAI (n) Prophylaxis 0% HCAI (n) Prophylaxis 
100%

ARR​ RRR​ RR NNT

1 92 17 0.02 0.81 0.19 45

2 235 33 0.06 0.85 0.15 18

3 432 54 0.10 0.86 0.14 10
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patients) in order to limit the duration of exposure. 
There is no established conclusion regarding the effect 
of oseltamivir treatment regarding on-ward transmis-
sion from patients already affected by influenza [39]. This 
is in line with the relatively low impact of antiviral treat-
ment detected by our model and further underlines the 
importance of antiviral prophylaxis. A modelling study 
of hospital influenza by Blanco et al. 2016 found antiviral 
treatment to be less effective than hand-washing, vacci-
nation and patient isolation, however they had not inves-
tigated antiviral treatment and prophylaxis separately 
[25].

All models use simplifying assumptions but need to 
depict real-world conditions as closely as possible to 
be reliable. The consistency in results made by a high 
number of simulations may be used as means of sensi-
tivity. Perfect predictions of future outcomes are impos-
sible to achieve, why the results should be interpreted 
more as trends although definite numbers are provided. 
Data for flu infectivity, vaccine effectivity, coverage, etc. 
are not known beforehand and may be unreliable even 
post-season. Other variables remain more stable across 
seasons, such as incubation time and treatment/prophy-
lactic effect. True verification and validation of model fit-
ness can however only be done retrospectively, when the 
actual outcome (total number of healthcare-associated 
influenza cases) is known. This is enabled in our model 
by integrating local hospital data, national surveillance 
data, and by the possibility to include new scenarios and 
modify any variable as soon as new information become 
available. Including seasonal updates of true HCAI num-
bers from our hospital may in the future be used for 
validation and continuous improvement of the model. 
To further develop the model, we also aim to introduce 
multivariable testing of extreme scenarios. By this mean, 
pandemic situations might be illustrated.

It is important to bear in mind that the aim for our 
model is to specifically illustrate hospital transmission 
of influenza with focus on patient safety, not efficiency 
in terms of cost-benefit. However, individual risks and 
benefits may apply for patients, even if they do not affect 
onward transmission. In analogy, prophylaxis may not be 
suitable for all patients. Moreover, increased use of anti-
virals may have ecological effects as it degrades poorly 
in conventional sewage processes which can contribute 
to antiviral resistance [58, 59]. The role of HCW’s and 
visitors for hospital transmission of influenza remain 
unclear. No data for influenza in HCW’s were avail-
able for the present study and therefore not possible to 
include as a variable in our model. Although numerous 
alternative simulation strategies were possible, the vari-
ables were selected to primarily capture hospital meas-
ures. It was assumed that testing extreme scenarios in 

step 2 would be more appropriate in assessing model fit-
ness rather than the less prominent changes in seasonal 
curves. The simulations were carried out by testing single 
variables, one at a time. To adequately predict future sce-
narios, multiple variable testing is needed as changes in 
patient flow, number of exposed patients, vaccine effec-
tivity et cetera might develop simultaneously.

System dynamic modelling is increasingly being used 
but it is unclear to what extent it comes into clinical 
practice [60]. We believe that by directing this paper 
outside the society of simulation specialists and instead 
towards healthcare providers may lead to increased util-
ity and understanding of the advantages of modelling. 
Moreover, we found the software application to be illus-
trative and user-friendly for this purpose. The variables 
included in our model need to be refigured to apply in 
different hospital settings, which can be achieved by free 
on-line publication. Hypotheses for interventions could 
initially be simulated, discarding those that were deemed 
to have none or little effect. By this mean, proposals of 
solutions could be selected for clinical trials, thus speed-
ing up the entire research process. Although site-specific 
data may vary according to guidelines practices and set-
tings, the model in the present form might still be use-
ful for increased understanding and generate hypotheses 
for hospital infection control practice. Further work is 
needed to develop and validate the model by retrospec-
tively comparing model estimates with true HCAI data to 
step-by step to optimize its use.

Conclusion
This study presents a system dynamic model that is 
easy to use and aim to capture the complex dynam-
ics of in-hospital transmission of influenza and identify 
potentially effective interventions to prevent healthcare-
associated infections. Our simulations identified antiviral 
prophylaxis as the most effective way to control in-hospi-
tal influenza transmission.
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